Bruchins: insect-derived plant regulators that stimulate neoplasm formation.
نویسندگان
چکیده
Pea weevil (Bruchus pisorum L.) oviposition on pods of specific genetic lines of pea (Pisum sativum L.) stimulates cell division at the sites of egg attachment. As a result, tumor-like growths of undifferentiated cells (neoplasms) develop beneath the egg. These neoplasms impede larval entry into the pod. This unique form of induced resistance is conditioned by the Np allele and mediated by a recently discovered class of natural products that we have identified from both cowpea weevil (Callosobruchus maculatus F.) and pea weevil. These compounds, which we refer to as "bruchins," are long-chain alpha,omega-diols, esterified at one or both oxygens with 3-hydroxypropanoic acid. Bruchins are potent plant regulators, with application of as little as 1 fmol (0.5 pg) causing neoplastic growth on pods of all of the pea lines tested. The bruchins are, to our knowledge, the first natural products discovered with the ability to induce neoplasm formation when applied to intact plants.
منابع مشابه
Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin.
Bruchins, mono and bis (3-hydroxypropanoate) esters of long chain alpha,omega-diols, are a recently discovered class of insect elicitors that stimulate cell division and neoplasm formation when applied to pods of peas and certain other legumes. Differential display analysis resulted in the identification of an mRNA whose level was increased by the application of Bruchin B to pea pods. The corre...
متن کاملInfluence of Plant Growth Regulators on Callus Induction, Silymarin Production and Antioxidant Activity in Milk Thistle (Silybum marianum L. Gaertn.) under Tissue Culture Medium
The Silybum marianum (L.) Gaertn. is the dicotyledonous herbs of the Asteraceae family that is important in medical industry. The biological active compound of S. marianum is a mixture of several flavonolignals generally known as silymarin. The purpose of this study was to optimize S. marianum tissue culture for callus induction, silymarin production and comparison of some biochemical traits be...
متن کاملSmall RNA Regulators of Plant-Hemipteran Interactions: Micromanagers with Versatile Roles
Non-coding small RNAs (sRNAs) in plants have important roles in regulating biological processes, including development, reproduction, and stress responses. Recent research indicates significant roles for sRNA-mediated gene silencing during plant-hemipteran interactions that involve all three of these biological processes. Plant responses to hemipteran feeding are determined by changes in the ho...
متن کاملNAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis.
Wood is formed by the successive addition of secondary xylem, which consists of cells with a conspicuously thickened secondary wall composed mainly of lignin and cellulose. Several genes involved in lignin and cellulose biosynthesis have been characterized, but the factors that regulate the formation of secondary walls in woody tissues remain to be identified. In this study, we show that plant-...
متن کاملAmmonium to Nitrate Ratio Affects Protocorm Like Bodies PLB Formation In vitro of Hybrid Cymbidium
Carbon and nitrogen are the two elements that most affect plant organogenesis. In vitro, usually as part of the macronutrients. Some anecdotal evidence from the literature suggests that the ammonium (NH4+) to nitrate (NO3–) ratio may affect orchid organogenesis. In this study, to test this hypothesis, different NH4+: NO3– ratios were tested on the development of protocorm-like bodies (PLBs) of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 11 شماره
صفحات -
تاریخ انتشار 2000